2020/2021 UEA Bachelor's Degree Programme (Taught in Chinese)

Chemical Engineering Tianjin University

* The information below is extracted from the existing curriculum at the university, which may be adjusted by the university as appropriate. Therefore, please refer to the curriculum used in the year of entry as final curriculum.

1. Program Overview

University/School: School of Chemical Engineering and Technology, Tianjin University Major: Chemical Engineering Awarding Degree: Bachelor of Engineering Duration: 4 years

2. Teaching Outcomes

This programme aims to develop top talents in engineering science and technology with modern scientific literacy, knowledge about liberal arts, sense of social responsibility and professional morality in addition to the mastery of basic theories and professional skills of chemical and related disciplines. Students will be equipped with global insights, innovative mentality and practical capabilities, contributing to the advancement of chemical engineering, energy, material, environment, etc.

3. Curriculum

Key Discipline: Chemical Engineering and Technology

Core Modules: Principles of Chemical Engineering, Chemical Engineering Thermodynamics, Chemical Reaction Engineering, Chemical Engineering Design, Chemical Engineering Safety, etc.

Related Majors: Resource Recycling and Science Engineering, Energy Chemical Engineering, Chemical Engineering and Industrial Bioengineering

Chemical Engineering Teaching Timetable

I. Humanities and Social Science

Com: Compulsory; Opt: Optional

				rs	۵	ц	-	ours				Cred	lit All	ocation by	/ Seme	ster			
Category -	Tune		dits	Нои	chinę urs	rime	pute	e Hc	Yea	ar 1	Yea	ar 2		Y	ear 3		Υe	ear 4	
	туре		Cre	Total	Теас Но	Expei	Com	Practice	1	2	Short	1	2	Short	1	2	Short	1	2
Humanities	Com	Chinese	4																
and Social	Com	China Overview	3																

II. Maths and Natural Science

_			S	ours	bu "	, ient	fer	e "				Crea	dit All	ocation by	/ Seme	ester			
Category	Туре	Module Title	redit	HH	achi	erin	mpu	actio	Ye	ar 1	Ye	ar 2		Y	'ear 3		Ye	ear 4	
			C	Tota	Te	Exp	Co Co	<u>г</u> т	1	2	Short	1	2	Short	1	2	Short	1	2
	Maths																		
	Com	Advanced Mathematics 2A	6	96	96				6										
	Com	Advanced Mathematics 2B	5	80	80					5									
	Com	Linear Algebra	3	48	48							3							
	Com	Probability Theory	2	32	32								2						
	Com	Data Processing and Numerical Analysis	2.5	40	32		8								2.5				
	Physic	S	5	91	67	24													
	Com	College Physics	4	64	64					4									
	Com	Physics Experiment A	1	27	3	24						2							
	Chemi	stry																	
		Inorganic Chemistry and Chemical	0.5	10	40				0.5										
	Com	Analysis 2A	2.5	40	40				2.5										
Maths and Natural	Com	Inorganic Chemistry and Chemical Analysis 2B	2.5	40	40					2.5									
	Com	Inorganic Chemistry Experiment 2A	1	25		25			2										
	Com	Inorganic Chemistry Experiment 2B	1	25		25				2									
	Com	Chemical Analysis Experiment	0.5	24		25				4									
Science	Opt	Advanced Organic Chemistry	2	32	32										2				
	Opt	Surface Chemistry	2	32	32											2			
	Opt	Modern Instrument Analysis	2	32	28	4										2			
	Comp	uter																	
	Com	College Computer Foundation 1	0	48	28		20		3										
	Com	Computer Simulation of Chemical Process	2	48	16		32									2			
	Opt	Computer Software Technology Foundation 2	3	64	40		24					3							
	Opt	Computer Hardware Technology Foundation	2.5	48	32		16						2						
	Opt	Multimedia Application Technology	2	40	24		16						2						
	Opt	Computer Network Foundation	2	32	24		8						2						
	Opt	Database Application Technology	2.5	48	28		20					2							
	Opt	Visual Basic Programming	2.5	48	32		16						2						_
	Opt	Java Programming	2	32	28		4						2						
	Opt	Visual C++ Programming	3	56	28		28						2						
Notes	14 cree	dits for Maths (14 credits for compulsory	modules	s);															

5 credits for Physics (5 credits for compulsory modules).	

7.5 credits for Chemical (7.5 credits for compulsory modules);

4 credits for Computer (2 credits for compulsory modules, 2 credits for optional modules); no credit from the module of "College Computer Foundation 1"; Students must pass "College Computer Foundation" test before graduation;

III. Discipline Foundation and Subject

			ts	ours	s	hent	lter	e v				Crec	lit Allo	ocation by	/ Seme	ster			
Category	Туре	Module Title	redi	al Hc	achi	erin	mpr	acti	Yea	ar 1	Yea	ar 2		Y	ear 3		Ye	ear 4	
			с С	Tota	Те	Exp	° °	<u>г</u> т	1	2	Short	1	2	Short	1	2	Short	1	2
	Discip	line Foundation																	
	Com	Engineering Drawing Foundation 3	3.5	56	52	2	2		4										
	Com	Organic Chemistry A, B	4	64	64							2	2						
	Com	Organic Chemistry Experiment 1	1.5	48		48							3						
	Com	Physical Chemistry 2A	3	48	48					3									
	Com	Physical Chemistry 2B	3	48	48							3							
	Com	Physical Chemistry Experiment 2A	1	26		26				2									
	Com	Physical Chemistry Experiment 2B	1	24		24						3							
		Introduction to Biochemical																	
Discipline	Com	Engineering	2	32								2							
Foundation	Com	Chemical Fluid Flow	2.5	40	40								3						
	Com	Chemical Fluid Heat Transfer	2	32	32								2						
	Com	Chemical Mass Transfer	3	48	48										4				
		Chemical Technology Basic	-	-	-														
	Com	Experiment	1.5	48		48									3				
		Chemical Safety and Environmental																	
	Com	Protection	2	32	32											2			
	Com	Instrumental Analysis 1	2	32	32										2				
	Com	Instrumental Analysis Experiment	1	24		24									1.5				
	Subjec	t Core Module																	
		Public Modules																	
	Com	Chemical Machinery Foundation	3	48	48										3				
	Com	Chemical Thermodynamics	3	48	48								3		0				
	Com	Chemical Reaction Engineering	3.5	56	56								Ū		4				
		Chemical Process Analysis and	0.0																
	Com	Synthesis	2	32	32											2			
	Com	Professional Experiment	2	64		64										4			
	Com	Introduction to Chemical Design	2	32	32					2						-			
	Com	Chemical Transfer Process 1	2	32	32										2				
		Chemical Instrumentation and	_	02	02										_				
	Com	Automation	2	32	32											2			
Subject	Com	Chemical Design	3	48	48											3			
		Introduction to Chemical Engineering	-	_	-														
	Com	1	2	32	32				2										
		Chemical Engineering Direction																	
		Chemical Separation Process																	
	Com	(Bilingual)	2.5	40	40											2.5			
	Com	Chemical Mathematics	3	48	48		8							3					
	Com	Environmental Chemical	2.5	40	40									0		25			
	Com	Reactor Design and Application	2	32	32											2.0		2	
		Molecular Design and Chemical	_	02	02													_	
	Com	Product Process	2	32	32											2			
	Com	Chemical Technology	25	40	40		-									25			
	00111	enemieur reennelogy	2.0	10	10		I	I	I	I						2.0	I	1	
Category	Type	Module Title	its	우 교 수	l D D	t ne	- te	e tic				Crec	lit All	ocation by	/ Semo	stor			
Calegory	iyhe		υē	· ·· ⊥	≓. ø		L D	ں ا	I			UIEL		Juanon D	, Jeine	3101			

	1							Yea	ar 1	Ye	ar 2		Y	'ear 3		Ye	ear 4	
								1	2	Short	1	2	Short	1	2	Short	1	2
	Subje	ct Optional Modules																
	Opt	Introduction to Polymers	2	32	32							2						
	Opt	Introduction to Food Engineering	2	32	32							2						
	Opt	Biomaterials and Tissue Engineering	2	32	32									2				
	Opt	Fountation of Fine Organic Synthesis	2	32	32							2						
	Opt	General Biology	2	32	32									2				
	Opt	Pharmaceutical Foundation	2	32	32							2						
	Opt	Biochemistry	2	32	32							2						
	Opt	Auxiliary Chemistry	2	32	32							2						
	Opt	Environmental Management System	2	32	32									2				
	Opt	New Energy Utilization Technology	2	32	32							2						
		Introduction to Catalytic Principles in																
	Opt	Energy and Environmental Processes	2	32	32									2				
	Opt	Chinese Medicine Engineering Foundation	2	32	32									2				
	Opt	Water Pollution Control	2	32	32									2				
	Opt	Petroleum Refining Technology	2	32	32									2				
	Opt	Chemical Business	2	32	32									2				
	Opt	Energy and Chemical Foundation	2	32	32									2				
	Opt	Molecular Design and Chemical Product Engineering	2	32	32												2	
	Opt	New Drug Design and Development	2	32	32										2			
	Opt	Polymer Material Molding Processing Principle	2	40	40												2	
	Opt	Reaction Kinetics Research Methods	2	32	32												2	
	Opt	Membrane Science and Technology	2	32	32												2	
	Opt	New Separation Technology	2	32	32												2	
	Opt	Deactivation and Regeneration of Solid Catalysts	2	32	32												2	
	Opt	Chemical Innovation Practice	2	32	32											3		
	Opt	Catalysis Science and Progress	2	32	32										2			
	Opt	Nanoscience and Technology	2	32	32										2			
	Opt	Advanced Structure Analysis and Characterization	2	32	32										2			
	Opt	Living Polymerization	2	32	32												2	
	Opt	Powder Technology	2	32	32										2			
	Opt	Microfluidics	2	32	32												2	
	Opt	Functional Polymer Materials1	2	32	32												2	
	Opt	Structure of Optoelectronic Polymer Materials	2	32	32										2			
Notoo	22.000	dite for Dissipling Foundation Medulase 20		4 O I-		- M	1 40	 		na Marahula								

IV. Practice

			S	s	ng	ient	ter	se ce				Crec	lit All	ocation by	/ Seme	ster			
Category	Туре	e Module Title	redit	/eek	achi	erin	ndu	actio	Y€	ear 1	Ye	ar 2		Y	'ear 3		Ye	ear 4	
			с С	>	те Те	Exp -	ů.	- 1	1	2	Short	1	2	Short	1	2	Short	1	2
	Modul	e Design																	
	Com	Chemical Engineering Project 1	1	1W										1					
Practice	Com	Chemical Engineering Project 2	2	2W													2		
_	Interns	ship																	
	Com	Cognition Practice	1	1W										1					

Com	Production Practice	2	2W												2		
Com	Simulation Practice	0.5	16			16									0.5		
Graduation Design (Dissertation)																	
Com	Graduation Design	10	12W													8	4
Com	Graduation Dissertation	10	12W														12

V. Innovation and Research

			ş	ours	bu °	lent	ter	e v				Crec	lit All	ocation by	/ Seme	ster			
Category	Туре	Module Title	redi	al Ho	achi	erim	ndu	actic	Yea	ar 1	Ye	ar 2		Y	'ear 3		Ye	ear 4	
			0	Tot:	Те	Exp	ů	L L	1	2	Short	1	2	Short	1	2	Short	1	2
	Innova	tion & Entrepreneurship	-			-		-			_						-		
	Opt	Introduction to Modern Chemical Design	1	16	16				1										
Innovation	Opt	Chemical Engineering Problems in Biological Macromolecule Research	1	16	16					1									
	Cross	Discipline Optional Modules																	
and	Opt	MATLAB Scientific Computing	2	32	32							2							
Research	Opt	English Practice for Science and Technology	2	32	32										2				
	Opt	Introduction to Horticultural Botany	2	32	32								2						
	Opt	Introduction to Electronic Science and Technology	1	16	16								1						
Notes	1 credi	t for Innovation & Entrepreneurship Modu	ıles; 2 c	redits for	Cross-	Discipli	ne Optio	onal Mo	dules.										